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C L O S U R E  O F  T H E  H Y D R O D Y N A M I C  T H E O R Y  O F  W E T T I N G  

I N  A S M A L L - S C A L E  R E G I O N  

O. Vo Voinov UDC 532.529:541.183 

The shape of the free boundary in the wetting of a smooth surface of a solid by a polymer liquid is investigated with 
allowance for the possible existence of a flow region exhibiting anomalous viscosity. An analytical solution of the problem is 

obtained for the rheological model of a nonlinearly viscous fluid in the thin-layer or film approximation, and it is compared with 

the solution for a weak dependence of the viscosity on the shear rate. An equation, invariant under the degree of polymerization 

(D.P.) of the polymer molecules, is derived for the scale of the region of the viscosity anomaly. It is shown that the rheological 
treamaent makes sense only for sufficiently large values of the macroscopic contact angle. Equations are found for the minimum 
admissible dynamic contact angles and capillary numbers limiting the validity of the rheological approach to closure of the theory 
in a small-scale region. 

The theory is compared with experimental work on capillary wetting. Allowance for the rheology of the liquid is 

effective in describing only part of the experimental dependence of the contact angle on the velocity. In the range of parameters 
where the theory taking rheology into account is valid, its results agree almost exactly with the results obtained for a Newtonian 
fluid. Similar agreement has been noted previously for the spreading of a polymer liquid droplet on a solid surface. 

1. DYNAMIC CONTACT ANGLE OF A NONLINEARLY 

VISCOUS LIQUID ON A SOLID SURFACE 

We consider the planar, steady flow of a liquid with a free boundary S, which moves with a velocity v relative to the 

solid wetted by it (Fig. 1). The Reynolds number is assumed to be small. 
The standard formulation of the theory of wetting [1, 2] on a solid stipulates the no-slip condition v x = - v ,  vy = 0 

at y = 0, along with the conditions on the free boundary S: impermeability of the liquid and zero tangential stresses 

v.n = 0, p, = 0  

and equality between the jump of the normal stress and the capillary pressure 

,on + P0 = q o .  

Here q is the curvature of the surface S, Po is the pressure in the gas, and ~r is the coefficient of surface tension. 

We also assume that the values of the velocity v are specified and continuous on the arcs L 0 and L m of the circles of 
large and small radius passing through points of the free boundary at distances h o and h m from the solid surface (h o > > hm). 
For definiteness, the centers of these circles are located at the intersections of the corresponding tangents to the free boundary 

S with the boundary of the solid y = 0. 
The dependence of the angle ot of the tangent to S relative to the solid surface on the distance h of a point of S from 

the solid surface is determined in the intermediate range 

/g,, -~ h << ho, 

where the values of the velocity on the large and small bounding arcs L o and L m do not influence of the flow in the intermediate 
range of distances h, provided that they are both of the same order of magnitude as the wetting rate v. 
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Fig. 1 

The order of  magnitude of  the minimum distance h m is specified [1, 2] to as two or three molecular diameters [h m = 

(2-3)a]. The angle t~ at the minimum distance h m is set equal to the static contact angle: 

cc = co,,, h = h,,,. (1.1) 

We assume that the capillary number is small: Ca = #oV/C/,~ 1, where #o is the maximum viscosity of the liquid. We 

also assume that the curvature q at the point h o of the free boundary decreases rapidly: 

dcosa 
q (ho) = ah ~ 0. (1.2) 

h0 

The rheological equation of state of the liquid is written as the equation of a nonlinearly viscous fluid: The stresses Pij 

are determined by the viscosity #, which decreases monotonically at large shear rates 3": 

Pii = - p ~ i j  + 2~tr r = ~  + ~ , i, ] =  I ,  2,  3, 

rt = ~t (7"), 7" = (2e0%j) 1/2. 

These expressions are model equations for a polymer liquid, since they do not take the effect of  normal stresses into 

account. 

Of special interest in regard to an approximate analytical description is the class of viscosity - -  shear rate functions #(7") 

having a slow rate of  change of  the viscosity with the shear rate [1]: 

This inequality is satisfied, for example, bY a power-law function # - 3" -k  with a small power exponent (k ~ 1). An analytical 

solution is also possible when the tangent to the free boundary forms a small angle relative to the solid surface (i.e., in the case 

of a thin layer). 

The slow variation of  the viscosity with the shear rate means that the solution of  the problem of flow of a liquid of 

constant viscosity within the angle ot can be used to solve the nonlinear problem of the shape of  the free boundary if the angle 

ot of the tangent varies slowly with the distance h, i.e., if 

ct : ~  h [dc~ /dh[ .  

This inequality can be satisfied by virtue of the small capillary number (Ca ,~ 1). 

If we introduce a characteristic shear rate in a flow region having a scale h equal to the distances from the solid surface 

�9 O 

v = • ~ ,  (1.3) 
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Fig. 2 

we can determine the viscosity # in this region and calculate the difference of the normal stresses at the boundary from the 

comer flow problem. We can then use the method of [i] to obtain the asymptotic dependence of  a on h from the differential 

equation for the angle a ,  which gives an expression for the curvature. For a < 145-150 ~ this dependence cart be described by 

the approximate relation 

h 

ct 3 = ct,3,, + rt • l-T" (1.4) 
htn 

An order-of-magnitude determination of the characteristic value of x is sufficient in Eqs. (1.3) and (1.4), because the 

viscosity/~ is assumed to depend only slightly on -y'. The foregoing analysis of the wetting of a surface by a thin liquid layer 

shows that a good approximation is achieved with x = 2. In [1] the value of  x differs by the additional factor a -1. 

We should mention the more general asymptotic equation from which Eq. (1.4) is deduced: 

- cos d~ -- ~t • T "  
(tin "~Jn 

(1.5) 

The applicability of  this equation is limited by the requirement of moderate slopes (a <- r/2) in the range of  distances h where 
the viscosity anomaly occurs. This limitation is imposed by the fact that ,y" (1.3) is not a characteristic shear rate in a region 

with the scale of distances from the surface equal to h for x = const and large (close to ~r) angles a .  

Obviously, the integrals with respect to h in Eqs. (1.4) and (1.5) converge for h m = 0 if the viscosity # decays 

sufficiently rapidly at large shear rates (7" "-" oo) [3-5]. The case h m = 0 corresponds to the general scheme, analogous to those 

in standard approaches [6, 7], for continuous closure of the problem for h = 0. It will be shown below, however, that the 

passage to the limit h m --- 0 is inadmissible in general. 

To specify the particular dependence of  the viscosity on the shear rate, it is useful to refer to experiments involving 

siloxane polymer liquids [8, 9], which can be approximately described by power-law dependences of  the viscosity/x on the shear 

rate for values of the latter above the critical value 3';,: 

it = ~to = const, ~/" < "/;, It = ~to ('r ~/" > ,/~. (1.6) 

As an example, the approximate dependence (1.6) is compared with experiment [9] in Fig. 2 for siloxane liquid with 

/x o = 600 P, where the following parameters are used in Eq. (1.6): k = 0.5; 3'~, = 200 see -1.  

We transform Eq. (1.4), taking (1.6) into account, for h > h , :  

o3 3 ) = c~m + - - ; -  l n ~ + r  , (1.7) 

One important factor limits the validity of using Eqs. (1.4), (1.5), and (1.7) to take into account the rheology of the 

liquid outside a small region of  scale h m, namely the condition that the scale of the viscosity anomaly region is much greater 

than the molecular scale (h.  ~, hm). We note that the expression for I '  in (1.7) can be used to estimate the order of magnitude 

of the contribution of  the flow conditions on the minimum scale h - h m. The formal passage to the limit hm/h. --, 0 would make 



it possible to obtain a closed solution on the basis of the closure relation for h = 0 without any need to use the conditions at 
h = h m. However, such a limit is nonexistent, for example, in the case of a relatively small wetting rate (v --, 0), when h ,  --, 

0. It is therefore important to determine the conditions under which the inequality h ,  ~, h m holds, as these conditions govern 
the validity of  the theological approach to closure of  the problem in a small-scale region. In this regard, it is useful to determine 

the solutions for small slopes of  the tangent to the free boundary. 

2. EQUATIONS OF CAPILLARY MOTION OF A THIN LAYER 

WITH A L L O W A N C E  F O R  T H E  VISCOSITY ANOMALY 

The velocity v x in a thin liquid layer satisfies the equation 

O avx ap 

where x is the coordinate along the layer, and y is the coordinate transverse to it. The conditions at the boundaries of  the layer 
with the solid and the gas are 

oo, 
v x = 0 ,  y = O ;  -~Ty = 0 ,  y=h .  

The flow of  liquid through a cross section of the film for a power-law dependence of  the viscosity on the shear rate (1.6) 
has the form 

Q= ~fv,.dy= v:'~2 I ~ / a - , )  k~ i  1 3 - 2 k  (I - k )  + 3  , ~ > 1, 
o 

(2.1) 

1 

h Op 
~ov: ax" (2.2) 

A more convenient representation of Eqs. (2.1) can be obtained without sacrificing acceptable accuracy. We consider 

the approximation (2.1) in the form 

I - -  k . . 2 . . -  I / ( l - k )  

Q = g-2-5-/,/.n ~ , r, > r,., (2.3) 

l �9 2 
Q = 3 v , h  ~, ~ < ~ . .  

The parameter ~', is determined from the condition of continuity of the flow Q at ~" = ~'.: 

= ( 1 -  2k/3~ l/k-I 
~* ~ 1 - t  ) (2.4) 

The equation for the profile of  a film in steady flow with a velocity v follows from the equation of continuity in integral 

form and the capillary pressure equation: 

: h  
(2 = by, p - po = - o  ~-~2" (2.5) 
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Fig. 3 

Equations (2.2)-(2.5) lead to the expressions 

h . = •  •  x = 2 , 1 5 - 2 , 2 5 ,  k = 0 - 0 , 5 .  

(2.6) 

The relative error A of approximate calculation of the right-hand side of the differential equation (2.6) according to (2.3) 
and (2.4) in comparison with the calculation according to (2.1) is negligible if the power exponent k is small. This statement 

is supported by Fig. 3, which shows graphs of the error A for k = 0.25 and 0.5 (curves 1 and 2). For k = 0.5 the maximum 

error is A = 6.6%. Here the error of calculation of h by the approximate equations (2.6) does not exceed 1%, owing to the 
rapid decrease of  A with increasing deviation of h from h. .  

Using the notation 

1./3 

we can rewrite Eqs. (2.6) in the form 

y2y, , ,  = I ,  y ;,  I ,  

y 2 - k y , , , =  1, y < 1. (2.8) 

For a thin layer we have 

cx = - d h / d x  , 

and the boundary conditions (1.1) and (1.2) assume the form 

O ~ ,{/3 hm 
y " ~ 0 ,  y ~ o o ,  y '  = - - a , , ,  ]3 - -~  | , Y= h"~" 

Next we consider the limit h .  ~, h m, whereupon the second boundary condition (2.9) is stipulated at y = 0. 
The approximate solution (1.7) can be rewritten with (2.9) taken into account: 

3 
-y' = (b 3 + 3F + In y)1~3, y;~ I b3= ~,,,_.~o 

' 3~.oV " 

(2.9) 

(2.10) 



3 .  A N A L Y T I C A L  S O L U T I O N  O F  T H E  BOUNDARY-VALUE 

P R O B L E M  F O R  L A R G E  W E T T I N G  R A T E S  

At sufficiently high velocities (Cem3a ,~ 31t0v ) or for complete static wetting, when the contact angle ~x m = 0, the second 
condition (2.9) gives 

y ' = 0 ,  y = 0 .  

We now investigate the asymptotic behavior of the solution of Eq. (2.8) for y > 1 [2]: 

y ' =  - ( 3 z )  ~'3 1 - ~ +  . . . .  z = C + l n y ' * ~  (3.1) 

(C is a parameter). Denoting by 0 the yet-unknown angle (in variables y, ~) at the boundary of the viscosity anomaly region: 

y ' =  w0, y = 1, (3.2) 

from (3.1) we find 

( ' )  y " = ~  1 - ~ - ~ +  . . . .  y =  1. (3 .3 )  

We use the subscript (+ )  to label the solution for y > 1. Including one or two terms, respectively, we then write in 
accordance with(3.3) 

,, , , , ( ; )  
Yr = ~ ,  Yc'*~ = ~ 1 - . (3 .4)  

Next we consider the region y < 1, in which Eq. (2.8) is conveniently rewritten 

U~/2u"= - - 2 y  k-2, u = (y,)2. 

Equation (3.5) in conjunction with the condition y '  = 0 at y = 0 has the exact solution 

t ~ "  9 .1 /3  

(3 .5)  

(3.6) 

An approximate solution can be sought in the neighborhood of u o in the series form 

u -- . o  + u~ + us + .. . .  uo >~ lu l l  >~ 1~21. 

T o  within an arbitrary constant, the first two terms of the series have the form 

(3 .7)  

U 1 = A y  kl, 
a 2 kt (kl - 1) ~ 2  

w - -  

~k g k - 1  §  

k l = ~ +  .~+.~ 1 - - -  , k2=2kl - '~  k" 

(3 .8)  



The following notation is useful: 

].12 

According to Eqs. (3.4) and (3.9), the unknown constants 0 and A in expressions (3.1) and (3.6)-(3.8) are determined 

from two equations, specifically the conditions of  continuity of the derivatives: 

y(~)i = Y('+)Y' y = I ,  y("-)~ = y~'.)). (3.10) 

We denote y '  in (3.10) by -0ij.  Calculations for k = 1/2 show that 022 differs from 032 = 1.955 (F = 2.492) by 

0.015% in order of  magnitude, i.e., the inclusion of the third term in Eq. (3.7) yields excessive accuracy. 

The inclusion of only one term in the asymptotic equation (3.1) gives 0~1 = 1.983 (F = 2.6), which differs from 02z 
at most by 1.4%. Consequently, one term in the asymptotic equation (3.1) permits the boundary-value problem for Eq. (2.8) 
to be solved within acceptable error limits and to describe the solution correctly for y > I.  

Of special interest is the value of 011, determined without regard for the second equation (3.10), from the first term of 

(3.7), which represents the exact solution u o, where independently of the solution for y > 1, 

1/3 

011 = ~(1 - 2k/3) (3.11) 

For k = 0.5 the error of the solution 011 = 2.08 is only 6.3%. 

It is interesting to assess the efficiency of the solution (1.7) 03 = 3/k. For k = 1/2 the error of  the value 0 = 1.82 
corresponding to (1.7) in comparison with the exact calculated value is only 7%. The error is even lower for smaller values of 
k. Consequently, both of  the solutions (1.7) and (3.11) are acceptable for k A I/2, where the exact value of the angle 0 lies 
approximately midway between them. 

4. ASYMPTOTIC JUSTIFICATION OF THE APPROXIMATE 

ANALYTICAL SOLUTIONS IN THE L I M I T  k ~ 0 

The above analytical solutions can be strengthened by analyzing the asymptotic behavior of  the solution of the boundary- 

value problem (2.8), (2.9) in the small-k limit (k --- 0), which is determined from Eqs. (3.1)-(3.10) in the form 

0 = k ( l  - -2k/3))  1 - - '~  + o ( k  2) , k ~  0,  O = - y ' l y = t .  (4.1) 

The principal term of  the asymptotic equation (4.1) corresponds to the approximate solution obtained for F with h m = 
0 in (1.7) on the basis of  the principle of slow variation of the angle with the distance h [1] and smallness of the quantity k 

(k,~ 1). 
Disregarding the term (1/3)I< 2 in (4.1), we obtain Eq. (3.11), which is asymptotically more accurate than the principal 

term of Eq. (4.1). 
The fact that the efficiency of the approximate analytical solutions of the problem of the angle at the boundary between 

the viscosity anomaly region and the region of constant viscosity may depend on the coincidence of these solutions with one or 

two terms of the asymptotic equation (4.1) can be ruled out as a factor in the comparison. 



4 

2 l / k ' ~ , ~  
- - - -  (5,11) 

o o,,~ k 

Fig. 4 

5. SOLUTION OF THE BOUNDARY-VALUE PROBLEM 
FOR SMALL W E T r I N G  RATES 

For large values of  the parameter 

3 
b3 ~,,,o 

= 3 - ~ :  >> | 

the asymptotic behavior of the solution of Eq. (2.8) for y ,~ 1 can be obtained on the basis of  (3.5) in the form 

t/2 

y' = - b  I + b3(l - k ) k  

where c 1 is an arbitrary constant. The condition for Eq. (5.1) to be valid for y < 1 and c 1 ,~ 1 has the form 

b3 ::~ 1 
t(~ - t) " 

The asymptotic solution of the boundary-value problem (2.8), (2.9) in the limit b ~ oo with allowance for (3.1), (3.2), 

and (5.1) can be used to find the angle/9 and the value of r in (2.10): 

103 k + l  b --- oo. r = ~ = - -T- - '  (5.2) 

The important feature of  Eq. (5.2) is its validity for any k. It is instructive to compare it with Eq. (3.11), which is valid 
for b = 0, and with Eq. (1.7). Clearly, the equations coincide in the limit k ~ 0. The indicated equations are compared for firtite 
k in Fig. 4, from which it is evident that Eqs. (3.11) and (5.2) give practically identical results for 0, which differ at most by 

1.3% for k < 1/2. In the case of  Eq. (1.7) the error of cz(h.) does not exceed 14.5%. Consequently, the equation (3.11) 

obtained for small values of  the parameter b also work quite well for large values of this parameter. It is therefore reasonable 

to expect that it should also apply to intermediate values of b - 1, i.e., everywhere. 
We note that Eqs. (1.7) and (3.11), which are valid for arbitrary values of the parameter b and for k < 1/2, give upper 

and lower bounds of the angle c~, respectively, but these bounds are close to one another. 
The results confirm the efficiency of Eq. (1.7), which has been derived not only for small values, but also for larger 

finite values of  the angles. 



6. SCALE EQUATIONS FOR T H E  R E G I O N  OF THE VISCOSITY 
ANOMALY AND L I M I T S  OF THE R H E O L O G I C A L  APPROACH 

Polymer liquids having substantially different molecular weights are used in experiments. It is important in this regard 

to estimate the dependence of the scale of the viscosity anomaly on the molecular weight of the polymer or on the D.P. N 

(number of structural units in the molecular chain). 
It is a well-known fact [8, 10] that the behavior of the maximum relaxation time of a polymer liquid r with increasing 

D.P. N is the same as that of  the maximum viscosity: 

- N 3'4, ~to - -  N 3 : .  

The characteristic critical shear rate has the value 3'; - 1H, so that the critical stress p .  does not depend on the D.P. N: 

~t0"/; = p. = const. (6.1) 

We write the critical scale h .  as a function of the capillary number Ca = ttoV/a on the basis of Eq. (2.6): 

h. = • Ca = [5 Ca. (6.2) 
P, 

The coefficient of  surface tension tr does not depend on the D.P. N, so that by virtue of (6.1) the proportionality factor 

B in Eq. (6.2) does not depend on N. This fundamental fact is appropriately called the theorem of invariance of the scale 
equation of the viscosity anomaly region h .  = /3 Ca under the D.P. N or the molecular weight of the polymer. 

The scale h .  is also conveniently expressed in terms of the macroscopic angle t~ o calculated approximately without 

regard for the viscosity anomaly according to Eq. (1.7) for the case of statically complete wetting: 

G 
h.  = cc3H, H = 4~0~,~ In ( h o / h , , , )  " (6.3) 

Equations (6.2) and (6.3) can be used to find the limits of validity of the rheological approach, which are deduced from 
the constraints of  the macroscopic description. We first indicate the analogous constraints for the case of  a Newtonian fluid. 

The method of  asymptotic solution of the problem of the dynamic contact angle on the basis of the inequality In (ho/ 

hm) ~, 1, i.e., the existence of a large parameter in the problem, admits [2] the possibility of  large errors, of the order of 100%, 
in the description of the flow near the boundary h = hm; however these errors have asymptotically little influence on the 
solutions in the region of  interest h --- oo. In particular, an e-fold variation of the minimum height hrn of the free surface only 

slightly affects the solutions or(h) in the limit h/h m --, oo, because it merely alters the angle ot by a small factor of the order of 

1/[3 ln(h/hm)] "~ 1. We also note that a region having a scale of a few molecular diameters is excluded from the problem in 

this method, and the flow in it cannot, in principle, be investigated. 
These considerations clearly discourage any hope for better than 100% error limits in the macroscopic description for 

non-Newtonian fluid flow in a region having a scale of a few molecular diameters. Equation (1.7) further corroborates this 

assessment for the problem with a free boundary. 
By virtue of  Eq. (6.3), the existence of a minimum scale of the viscosity anomaly region h .  implies the existence of 

a critical minimum angle O~mi n, at or below which it is impossible to describe the viscosity anomaly region macroscopically: 

Ctmin = a0, h. = rain h. = 4a. (6.4) 

The value 4a is adopted here, because the "wedge" in which the flow is analyzed now has a characteristic average thickness of 

only two molecular diameters, since the average value (scale) of the thickness of the small region is roughly equal to half the 

minimum thickness, i.e., 0 .5h. .  
According to Eqs. (6.3) and (6.4), the minimum admissible angle is 

ao,~n = (4a/ H) ~'3. (6.5) 



At the minimum angle oe o = Cemi n the rheological approach is not as sensible as the exclusion of  a small microscopic 

region having a scale of  two or three molecules from the investigation. And only for sufficiently large angles can the rheological 

approach be expected to work for closure of the theory in the small-scale case. 

The phenomenon whereby rheology of a polymer liquid is manifested only at large dynamic angles ce o is contrary to 

the effect of  the van der Waals forces, which exert an appreciable influence on the angle ce o only for extremely small values 
of the angle (ce o a 1) [2]. We have previously arrived at this conclusion [2] on the basis of asymptotic equations that yield good 

agreement with numerical calculations [11]. 

The conclusion that the rheological approach is valid only for sufficiently large angles has general implications and is 

not merely restricted to the specific rheological equation of state. 

7. COMPARISON OF THEORY WITH EXPERIMENT 

It is instructive to determine the influence of the viscosity anomaly on the theoretical curve of  the contact angle as a 

function of  the shear rate for the case of a moving gas-liquid interface in a circular capillary. If  rheology is ignored, this curve 

is known [1, 12] to agree with experimem for polymer liquids [13] and for low-molecular liquids [14]. 

In the dynamics of  complete wetting (ce m = 0) of a circular capillary of radius h~ the contact angle c~ o for a constant 

viscosity # = const is given by the following equations on the basis of  (1.5): 

C t  3 = 9~oU . " 7 - 1 ,  ct0~ 145 ~ 

9 a  I - -  COS c t  0 9 ~ 0 o  . 

( z t -  cq~) 3+-~- In  I +cos,Lo T, I ,  cto> 145 ~ , 

f = In (&Jh,,.), h. = (1/2) c~/1~, cto < 32"; ho = 0,16h~, C~o ~ 32 ~ 

(7.1) 

The value of the constant 0.16 has been found by an approximate calculation [1] for ce o - ~r/2. 

The coefficient f in (7.1) is given by a different equation in the model with rheology taken into account: 

f = F + In ho (7.2) 
h ,  ' 

where h .  is given by (6.2), and I" = 2.5 for k = 1/2. We note that the values of  r and h .  in Eq. (7.2) have the significance 

of extrapolated values for cz o > (3/4)a-, since the angles ce(h.) - ~r/2 are not small in the small viscosity anomaly region. 
The molecular diameter a, which is needed in order to calculate hm, can be estimated from the diameter of a sphere 

of equivalent volume: 

= (6., I,.3 
I~o} " (7.3) 

Here p is the density of  the liquid, and m is the mass of  the molecule. The molecular weight is M = 1.2-105 (N = 1620) for 

the siloxane liquid of  viscosity la o = 988 P used in [13] and is M -- 18,500 (N = 250) for #o = 9.58 P. Here the characteristic 

molecular diameters from (7.3) are (respectively) 

a = 7 2 . 1 0  - 8  em and a = 39.10 -8  em ( 7 . 4 )  

The characteristic molecular diameter (7.3) is close to the average distance between the centers of  gravity of  adjacent 

molecules, which differs from the true molecular diameter in that it does not depend on the degree of  mutual entanglement of 

the polymer molecules. 

Estimates of the size of polymer molecules can also be considered on the basis of statistical theory [10]. If free motion 

of the chain molecule is assumed (ignoring its interaction with adjacem molecules), the mean-square distance between its ends 

is 

10 
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(r 2) = 2c~12N, 

where the length of  the bond is l = 1.64-10 -8  cm, and the constant co, = 6.43 in the case of  polydimethylsiloxane [10]. If we 

compare approximately a 2 <_ (r2), we obtain the estimates 

a <- 90.10- '  cm, N = 250; a <- 230.10- '  cm, N = 1620. 

These estimates are probably high, but do not differ too much from (7.4), at most by a factor of  two or three. 
I f h  m = 2a is determined from (7.4), then h m = 0.8.10 -6  em and 1.4.10 -6  cm, which imparts a certain stratification 

to the theoretical curves. However, their stratification is slight, and the average value h m = 10 -6  cm [12] is justified for h m 

by the fact that a 1.4-fold variation of  hra does not alter the calculated angle ot o by more than 1%, which does not exceed the 

admissible computational error limits. 

Using the indicated values of  the coefficients, we can determine the values of  the parameters /3 and H in the scale 

equations (6.2) and (6.3) for the viscosity anomaly region, which have the following form for the experiments [13] discussed 

here with/t  o = 988 P, ~r = 21.7 dyn/cm, 3'~, -- 150 see -1, and h~ = 10 -1 cm: 

= 3.3.10 -4 era, H = 3.8.10 -6 cm. 

Taking these values into account, we find the minimum admissible angle from Eq. (6.5) for N = 1620: Otmin = 52 ~ In this 

case it makes sense to calculate the minimum-scale region according to the rheological equations for somewhat larger angles 

(s o <_ 90*) [4]. If  the D.P. N is increased, the minimum admissible angle increases slowly. 

In the case of  siloxane liquid of relatively low viscosity [/t o = 9.58 P (N = 250)] the critical angle is Otmin -- 35 ~ arid 

the rheological approach is therefore effective for ot o > 50*. We note, however, that the model of  a power-law dependence of 

the viscosity on the shear rate works poorly in the case N = 250. 

In Fig. 5 the theory applicable to a Newtonian fluid with the closure condition for the minimum scale h = h m [1] [Eqs. 

(7.1) (curve 1)] is compared with the rheology-based theory [Ezls. (7.1) and (7.2) (curve 2)] and with experiment [13] (points 

3 and 4 for #o = 988 P and 9.58 P, respectively). It is evident from these data that the rheological method of  continuous closure 

for h = 0, where it is applicable, is consistent with the method based on the assumption of a constant viscosity (# = const). 

This result corresponds to the analogous conclusion that the results of calculations with allowance for rheology agrees with the 

results of  calculations based on the assumption/~ = const in the case of spontaneous spreading of  a droplet on a solid 

surface [1]. 

It is evident from Fig. 5 that the extrapolation of the rheology-based equations into the range of  contact angles 

comparable with x gives results that exhibit somewhat better agreement with experiment than those according to the theory with 

/~ -- const. 
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In the case of a polymer liquid [13] with the maximum viscosity ~ = 988 P) the large value of the minimum contact 
angle at the boundary (e%i n = 52") and the justification of the rheological approach for even larger angles ((~o >- 90 ~ rule out 
the theoretical description of a significant portion of the experimental points from [13] by the rheological approach. In the case 
of a polymer liquid [13] with #o = 9.58 P a large part of the experimental data remains outside the region of validity of the 
method of closure of the theory with allowance for rheology on the basis of the condition imposed directly on the solid surface 
ath = 0. 
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